Lecture 7: April 10, 2023
Lecturer: Ali Vakilian (notes based on notes from Madhur Tulsiani)

1 Singular Value Decomposition for matrices

Using the previous discussion, we can write matrices in convenient form. Let $A \in \mathbb{C}^{m \times n}$, which can be thought of as an operator from \mathbb{C}^{n} to \mathbb{C}^{m}. Let $\sigma_{1}, \ldots, \sigma_{r}$ be the non-zero singular values and let v_{1}, \ldots, v_{r} and w_{1}, \ldots, w_{r} be the right and left singular vectors respectively. Note that $V=\mathbb{C}^{n}$ and $W=\mathbb{C}^{m}$ and $v \in V, w \in W$, we can write the operator $|w\rangle\langle v|$ as the matrix $w v^{*}$, where v^{*} denotes $\overline{v^{T}}$. This is because for any $u \in V$, $w v^{*} u=w\left(v^{*} u\right)=\langle v, u\rangle \cdot w$. Thus, we can write

$$
A=\sum_{i=1}^{r} \sigma_{i} \cdot w_{i} v_{i}^{*} .
$$

Let $W \in \mathbb{C}^{m \times r}$ be a matrix with w_{1}, \ldots, w_{r} as columns, such that $i^{\text {th }}$ column equals w_{i}. Similarly, let $V \in \mathbb{C}^{n \times r}$ be a matrix with v_{1}, \ldots, v_{r} as the columns. Let $\Sigma \in \mathbb{C}^{r \times r}$ be a diagonal matrix with $\Sigma_{i i}=\sigma_{i}$. Then, check that the above expression for A can also be written as

$$
A=W \Sigma V^{*},
$$

where $V^{*}=\overline{V^{T}}$ as before.
We can also complete the bases $\left\{v_{1}, \ldots, v_{r}\right\}$ and $\left\{w_{1}, \ldots, w_{r}\right\}$ to bases for \mathbb{C}^{n} and \mathbb{C}^{m} respectively and write the above in terms of unitary matrices.

Definition 1.1 A matrix $U \in \mathbb{C}^{n \times n}$ is known as a unitary matrix if the columns of U form an orthonormal basis for \mathbb{C}^{n}.

Proposition 1.2 Let $U \in \mathbb{C}^{n \times n}$ be a unitary matrix. Then $U U^{*}=U^{*} U=\mathrm{id}$, where id denotes the identity matrix.

Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a completion of $\left\{v_{1}, \ldots, v_{r}\right\}$ to an orthonormal basis of \mathbb{C}^{n}, and let $V_{n} \in$ $\mathbb{C}^{n \times n}$ be a unitary matrix with $\left\{v_{1}, \ldots, v_{n}\right\}$ as columns. Similarly, let $W_{m} \in \mathbb{C}^{m \times m}$ be a unitary matrix with a completion of $\left\{w_{1}, \ldots, w_{r}\right\}$ as columns. Let $\Sigma^{\prime} \in \mathbb{C}^{m \times n}$ be a matrix with $\Sigma_{i i}^{\prime}=\sigma_{i}$ if $i \leq r$, and all other entries equal to zero. Then, we can also write

$$
A=W_{m} \Sigma^{\prime} V_{n}^{*} .
$$

2 Low-rank approximation for matrices

Given a matrix $A \in \mathbb{C}^{m \times n}$, we want to find a matrix B of rank at most k which "approximates" A. For now we will consider the notion of approximation in spectral norm i.e., we want to minimize $\|A-B\|_{2}$, where

$$
\|(A-B)\|_{2}=\max _{v \neq 0} \frac{\|(A-B) v\|_{2}}{\|v\|_{2}} .
$$

Here, $\|v\|_{2}=\sqrt{\langle v, v\rangle}$ denotes the norm defined by the standard inner product on \mathbb{C}^{n}. The 2 in the notation $\|\cdot\|_{2}$ comes from the expression we get by expressing v in the orthonormal basis of the coordinate vectors. If $v=\left(c_{1}, \ldots, c_{n}\right)^{T}$, then $\|v\|_{2}=\left(\sum_{i=1}^{n}\left|c_{i}\right|^{2}\right)^{1 / 2}$ which is simply the Euclidean norm we are familiar with. ${ }^{1}$ Note that while the norm here seems to be defined in terms of the coefficients, which indeed depend on the choice of the orthonormal basis, the value of the norm is in fact $\sqrt{\langle v, v\rangle}$ which is just a function of the vector itself and not of the basis we are working with. The basis and the coefficients merely provide a convenient way of computing the norm.
SVD also gives the optimal solution for another notion of approximation: minimizing the Frobenius norm $\|A-B\|_{F}$, which equals $\left(\sum_{i j}\left(A_{i j}-B_{i j}\right)^{2}\right)^{1 / 2}$. We will see this later. Let $A=\sum_{i=1}^{r} w_{i} v_{i}^{*}$ be the singular value decomposition of A and let $\sigma_{1} \geq \cdots \geq \sigma_{r}>0$. If $k \geq r$, we can simply use $B=A$ since $\operatorname{rank}(A)=r$. If $k<r$, we claim that $A_{k}=\sum_{i=1}^{k} \sigma_{i} w_{i} v_{i}^{*}$ is the optimal solution.

Proposition $2.1\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}$.
Proof: Complete v_{1}, \ldots, v_{k} to an orthonormal basis v_{1}, \ldots, v_{n} for \mathbb{C}^{n}. Given any $v \in \mathbb{C}^{n}$, we can uniquely express it as $\sum_{i=1}^{n} c_{i} \cdot v_{i}$ for appropriate coefficients c_{1}, \ldots, c_{n}. Thus, we have
$\left(A-A_{k}\right) v=\left(\sum_{j=k+1}^{r} \sigma_{j} \cdot w_{j} v_{j} *\right)\left(\sum_{i=1}^{n} c_{i} \cdot v_{i}\right)=\sum_{j=k+1}^{r} \sum_{i=1}^{n} c_{i} \sigma_{j} \cdot\left\langle v_{j}, v_{i}\right\rangle \cdot w_{j}=\sum_{j=k+1}^{r} c_{j} \sigma_{j} \cdot w_{j}$,
where the last equality uses the orthonormality of $\left\{v_{1}, \ldots, v_{n}\right\}$. We can also complete w_{1}, \ldots, w_{r} to an orthonormal basis w_{1}, \ldots, w_{m} for C^{m}. Since $\left(A-A_{k}\right)$ is already expressed in this basis above, we get that
$\left\|\left(A-A_{k}\right) v\right\|_{2}^{2}=\left\|\sum_{j=k+1}^{r} c_{j} \sigma_{j} \cdot w_{j}\right\|_{2}^{2}=\left\langle\sum_{j=k+1}^{r} c_{j} \sigma_{j} \cdot w_{j}, \sum_{j=k+1}^{r} c_{j} \sigma_{j} \cdot w_{j}\right\rangle=\sum_{j=k+1}^{r}\left|c_{j}\right|^{2} \cdot \sigma_{j}^{2}$.

[^0]Finally, as in the computation with Rayleigh quotients, we have that for any $v \neq 0$ expressed as $v=\sum_{i=1}^{n} c_{i} \cdot v_{i}$,

$$
\frac{\left\|\left(A-A_{k}\right) v\right\|_{2}^{2}}{\|v\|_{2}^{2}}=\frac{\sum_{j=k+1}^{r}\left|c_{j}\right|^{2} \cdot \sigma_{j}^{2}}{\sum_{i=1}^{n}\left|c_{i}\right|^{2}} \leq \frac{\sum_{j=k+1}^{r}\left|c_{j}\right|^{2} \cdot \sigma_{k+1}^{2}}{\sum_{i=1}^{n}\left|c_{i}\right|^{2}} \leq \sigma_{k+1}^{2}
$$

This gives that $\left\|A-A_{k}\right\|_{2} \leq \sigma_{k+1}$. Check that it is in fact equal to σ_{k+1} (why?)
In fact the proof above actually shows the following:
Exercise 2.2 Let $M \in \mathbb{C}^{m \times n}$ be any matrix with singular values $\sigma_{1} \geq \cdots \sigma_{r}>0$. Then, $\|M\|_{2}=$ σ_{1} i.e., the spectral norm of a matrix is actually equal to its largest singular value.

Thus, we know that the error of the best approximation B is at most σ_{k+1}. To show the lower bound, we need the following fact.

Exercise 2.3 Let V be a finite-dimensional vector space and let S_{1}, S_{2} be subspaces of V. Then, $S_{1} \cap S_{2}$ is also a subspace and satisfies

$$
\operatorname{dim}\left(S_{1} \cap S_{2}\right) \geq \operatorname{dim}\left(S_{1}\right)+\operatorname{dim}\left(S_{2}\right)-\operatorname{dim}(V)
$$

We can now show the following.
Proposition 2.4 Let $B \in \mathbb{C}^{m \times n}$ have $\operatorname{rank}(B) \leq k$ and let $k<r$. Then $\|A-B\|_{2} \geq \sigma_{k+1}$.
Proof: By rank-nullity theorem $\operatorname{dim}(\operatorname{ker}(B)) \geq n-k$. Thus, by the fact above

$$
\operatorname{dim}\left(\operatorname{ker}(B) \cap \operatorname{Span}\left(v_{1}, \ldots, v_{k+1}\right)\right) \geq(n-k)+(k+1)-n \geq 1
$$

Thus, there exists a $z \in \operatorname{ker}(B) \cap \operatorname{Span}\left(v_{1}, \ldots, v_{k+1}\right) \backslash\{0\}$. Then,

$$
\begin{aligned}
\|(A-B) z\|_{2}^{2}=\|A z\|_{2}^{2}=\left\langle z, A^{*} A z\right\rangle & =\mathcal{R}_{A^{*} A}(z) \cdot\|z\|_{2}^{2} \\
& \geq\left(\min _{y \in \operatorname{Span}\left(v_{1}, \ldots, v_{k+1}\right) \backslash\{0\}} \mathcal{R}_{A^{*} A}(y)\right) \cdot\|z\|_{2}^{2} \\
& \geq \sigma_{k+1}^{2} \cdot\|z\|_{2}^{2} .
\end{aligned}
$$

Thus, there exists a $z \neq 0$ such that $\|(A-B) z\|_{2} \geq \sigma_{k+1} \cdot\|z\|_{2}$, which implies $\|A-B\|_{2} \geq$ σ_{k+1}.

[^0]: ${ }^{1}$ In general, one can consider the norm $\|v\|_{p}:=\left(\sum_{i=1}^{n}\left|c_{i}\right|^{p}\right)^{1 / p}$ for any $p \geq 1$. While these are indeed valid notions of distance satisfying a triangle inequality for any $p \geq 1$, they do not arise as a square root of an inner product when $p \neq 2$.

